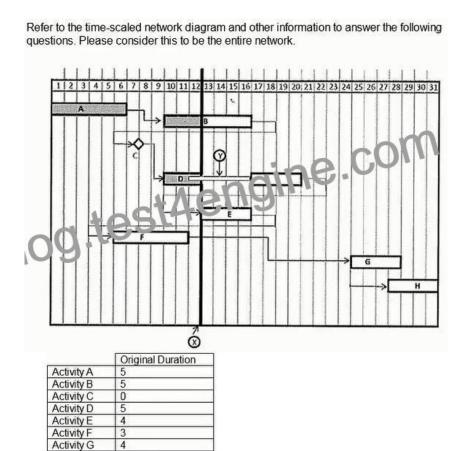

# 2022 New AACE-PSP Exam Questions Real AACE International Dumps [Q31-Q45



2022 New AACE-PSP Exam Questions Real AACE International Dumps Course 2022 AACE-PSP Test Prep Training Practice Exam Download

Q31. Determine the correct formula and date for the late start for Activity 9001.

|       |                                   | Logic                                |                            |                      | Normal Schedule |                 | Crashed Schedule |                 |
|-------|-----------------------------------|--------------------------------------|----------------------------|----------------------|-----------------|-----------------|------------------|-----------------|
| ID    | Activity                          | Succ.                                | Rel.                       | Lag                  | Days            | Direct<br>Costs | Days             | Direct<br>Costs |
| 1000  | General<br>Conditions             | 11001                                | FF                         |                      | 1072            | \$3,080,000     | 910              | \$2,902,900     |
| 1001  | Preliminary Civil<br>Work         | 1000<br>2001<br>7001                 | SS<br>FS<br>FS             |                      | 85              | \$563,000       | 67               | \$728,000       |
| 2001  | River Diversion<br>Stage 1        | 2002                                 | FS                         |                      | 92              | \$150,000       | 75               | \$190,000       |
| 2002  | River Diversion<br>Stage 2        | 2003                                 | FS                         |                      | 38              | \$25,000        | 28               | 35,000          |
| 2003  | River Diversion<br>Dam            | 2004<br>3001                         | FS<br>FS                   |                      | 15              | \$18,000        | 11               | \$20,000        |
| 2004  | River Diversion to<br>Pipeline    | 3001<br>7001                         | FS<br>FS                   |                      | 38              | \$96,000        | 38               | \$96,000        |
| 3001  | Excavation, Dam<br>Site           | 4001<br>4001<br>5001<br>5001<br>7001 | SS<br>FF<br>SS<br>FF<br>FS | 15<br>15<br>65<br>65 | 30              | \$482,000       | 100              | \$515,000       |
| 4001  | Excavation,<br>Spillway           | 5001<br>5001<br>5001                 | SS                         | 45<br>45             | gi              | \$6.78,700      | 118              | \$692,000       |
| 5001  | Drill and arout                   | 001                                  | FS                         |                      | 102             | \$637,000       | 92               | \$650,000       |
| 001   | First Fill: to                    | 6002                                 | FS                         |                      | 140             | \$1,352,000     | 105              | \$1,470,000     |
| 6002  | Rock Fill: to<br>elevation 38     | 6003                                 | FS                         |                      | 115             | \$969,000       | 95               | \$1,125,000     |
| 6003  | Rock Fill: to<br>elevation 50     | 8001<br>9002<br>9002<br>9003         | FS<br>SS<br>FF<br>FS       | 65<br>65             | 152             | \$1,360,000     | 113              | \$1,540,000     |
| 7001  | Permanent Roads                   | 11001<br>9004                        | FS<br>FS                   |                      | 48              | \$180,000       | 38               | \$205,000       |
| 8001  | Valve House<br>Embankment         | 9004                                 | FS                         |                      | 28              | \$28,000        | 22               | \$36,000        |
| 9001  | Spillway –<br>Concrete            | 11001<br>9002<br>9003                | FS<br>FS<br>FS             |                      | 175             | \$1,120,000     | 155              | \$1,305,000     |
| 9002  | Dam Concrete<br>Facing – Concrete | 1001<br>9005                         | FS<br>FS                   |                      | 180             | \$1,260,000     | 160              | \$1,485,000     |
| 9003  | Inlet Tower –<br>Concrete 1 of 2  | 9005                                 | FS                         | 7                    | 70              | \$275,000       | 65               | \$295,000       |
| 9004  | Valve House –<br>Concrete         | 10002                                | FS                         | 7                    | 72              | \$245,000       | 66               | \$265,000       |
| 9005  | Inlet Tower –<br>Concrete 2 of 2  | 10001                                | FS                         | 7                    | 35              | \$28,000        | 35               | \$28,000        |
| 10001 | Inlet Tower –<br>Complete         | 11001                                | FS                         |                      | 25              | \$147,000       | 25               | \$147,000       |
|       | Valve House -                     | 10001                                | FS                         |                      | 24              | \$132,000       | 24               | \$133,000       |


Q32. What does the narrow band at "Y" represent?

<sup>\*</sup> The early finish is required in order to determine the answer.

<sup>\*</sup> LS.6001 Dur.6001 -> 11-20-02.

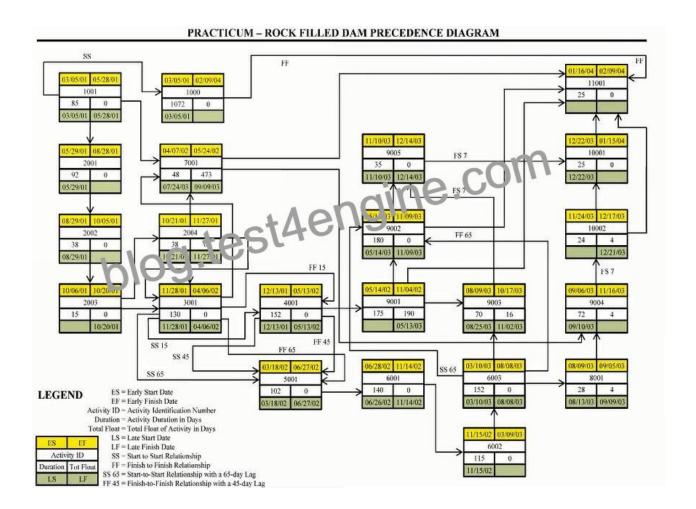
<sup>\*</sup> There is insufficient data provided to calculate the answer.

<sup>\*</sup> LF.9001 Dur.9001 -> 11-20-02.



- \* Resource limitation period.
- \* A rework period.
- \* Activity inactivity.
- \* You cannot tell with the information supplied.

Q33. Which of the following phases does NOT describe the commonly accepted construction life cycle?


- \* Claims and disputes phase.
- \* Installation phase.
- \* Planning and design phase.
- \* Turnover and start-up phase.

Q34. Each of the following accurately describes total float in a schedule EXCEPT:

- \* The amount of time an activity can be delayed without delaying the overall project completion time.
- \* Can be positive or negative.
- \* The amount of time an activity can be delayed without delaying the start or occurrence of any other activity or event in the network.
- \* Computed for an activity by subtracting its early finish from its late finish, or its early start from its late start.

## Q35. Scenario:

The entire network consists of the following activities and relationships. Activity A is twenty days long and is tied to Activity B, a ten-day activity, with a finish-to-finish tie with a lag value of five Activity B is tied to Activity C, a twenty-day activity, with a start-to-start relationship with a lag value of five.



#### **PSP** Activities Table

Scope Known about Rock-Filled Dam Project:

The dam requires river diversion and work over two or more rainy seasons. The contract is lump sum, competitively bid, and will be self-performed. The owner has attempted to shift all risk to the contractor by employing "no differing sit conditions" and "no damage for delay" clauses. There is a bonus/penalty provision of \$2,500 per calendar day for early or late delivery. The early completion bonus is capped at \$500,000, with no cap for late delivery penalty.

Liquidated damages end at the finish of demobilization. Indirect costs per calendar day are \$2,800 for the

"normal" schedule and \$3,200 for the "crashed" schedule. The winter/wet weather season is 151 days between October 15 and March 25 of each year, reduces the efficiency of the contractor's operations by 20% and costs the contractor \$10,000 per day. Assume a start date of March 5, 2001 and use a 7-day work week.

The following table lists work activities as planned by the contractor.

|       |                                   | Logic                                |                            |                      | Normal Schedule |                 | Crashed Schedule |                 |
|-------|-----------------------------------|--------------------------------------|----------------------------|----------------------|-----------------|-----------------|------------------|-----------------|
| ID    | Activity                          | Succ.                                | Rel.                       | Lag                  | Days            | Direct<br>Costs | Days             | Direct<br>Costs |
| 1000  | General<br>Conditions             | 11001                                | FF                         |                      | 1072            | \$3,080,000     | 910              | \$2,902,900     |
| 1001  | Preliminary Civil<br>Work         | 1000<br>2001<br>7001                 | SS<br>FS<br>FS             |                      | 85              | \$563,000       | 67               | \$728,000       |
| 2001  | River Diversion<br>Stage 1        | 2002                                 | FS                         |                      | 92              | \$150,000       | 75               | \$190,000       |
| 2002  | River Diversion<br>Stage 2        | 2003                                 | FS                         |                      | 38              | \$25,000        | 28               | 35,000          |
| 2003  | River Diversion<br>Dam            | 2004<br>3001                         | FS<br>FS                   |                      | 15              | \$18,000        | 11               | \$20,000        |
| 2004  | River Diversion to<br>Pipeline    | 3001<br>7001                         | FS<br>FS                   |                      | 38              | \$96,000        | 38               | \$96,000        |
| 3001  | Excavation, Dam<br>Site           | 4001<br>4001<br>5001<br>5001<br>7001 | SS<br>FF<br>SS<br>FF<br>FS | 15<br>15<br>65<br>65 | 30              | \$482,000       | 100              | \$515,000       |
| 4001  | Excavation,<br>Spillway           | 5001<br>5001<br>5001                 | SS                         | 45<br>45             | gi              | \$6.78,000      | 118              | \$692,000       |
| 5001  | Drill c.d. ro. t                  | 001                                  | FS                         |                      | 102             | \$637,000       | 92               | \$650,000       |
| 001   | First Fill: to                    | 6002                                 | FS                         |                      | 140             | \$1,352,000     | 105              | \$1,470,000     |
| 6002  | Rock Fill: to<br>elevation 38     | 6003                                 | FS                         |                      | 115             | \$969,000       | 95               | \$1,125,000     |
| 6003  | Rock Fill: to<br>elevation 50     | 8001<br>9002<br>9002<br>9003         | FS<br>SS<br>FF<br>FS       | 65<br>65             | 152             | \$1,360,000     | 113              | \$1,540,000     |
| 7001  | Permanent Roads                   | 11001<br>9004                        | FS<br>FS                   |                      | 48              | \$180,000       | 38               | \$205,000       |
| 8001  | Valve House<br>Embankment         | 9004                                 | FS                         |                      | 28              | \$28,000        | 22               | \$36,000        |
| 9001  | Spillway –<br>Concrete            | 11001<br>9002<br>9003                | FS<br>FS                   |                      | 175             | \$1,120,000     | 155              | \$1,305,000     |
| 9002  | Dam Concrete<br>Facing – Concrete | 1001<br>9005                         | FS<br>FS                   |                      | 180             | \$1,260,000     | 160              | \$1,485,000     |
| 9003  | Inlet Tower –<br>Concrete 1 of 2  | 9005                                 | FS                         | 7                    | 70              | \$275,000       | 65               | \$295,000       |
| 9004  | Valve House –<br>Concrete         | 10002                                | FS                         | 7                    | 72              | \$245,000       | 66               | \$265,000       |
| 9005  | Inlet Tower –<br>Concrete 2 of 2  | 10001                                | FS                         | 7                    | 35              | \$28,000        | 35               | \$28,000        |
| 10001 | Inlet Tower –<br>Complete         | 11001                                | FS                         |                      | 25              | \$147,000       | 25               | \$147,000       |
|       | Valve House -                     | 10001                                | FS                         |                      | 24              | \$132,000       | 24               | \$133,000       |

Theoretically construct a summary activity for only those activities with a finish-to-start relationship for Activities 8001 through 10001. Using the "normal" schedule, what is the cost of this hammock?

- \* \$420,000.
- \* \$307,000.
- \* \$524,000.
- \* \$552,000.

Q36. The sum of all budgets for work scheduled to be accomplished within a given time period is the

<sup>\*</sup> Estimate at completion (EAC)

- \* Budget at completion (BAC)
- \* Budgeted cost of work performed (BCWP)
- \* Budgeted cost of work scheduled (BCWS)

#### Q37. Project delays are best analyzed

- \* After either the contractor or the owner acknowledges responsibility for the delay.
- \* Contemporaneously with the delay.
- \* By an expert after the project is finished when complete records are available and the impact is known.
- \* Late in the project.

#### Q38. What is a key first step in developing a critical path method schedule?

- \* Drawing a bar chart of the key phrases of the work.
- \* Defining the execution plan to meet the required scope of work.
- \* Setting out the resource to be used and its limitations.
- \* Drawing the logic diagram.

#### Q39. For which of these delays should an owner grant a time extension?

- \* Structural steel shop drawings.
- \* Shop drawings and centrifuge delay.
- \* Differing site conditions at parking structure.
- \* Differing site conditions and centrifuge delay.

### Q40. When resource leveling craft labor for a critical path schedule, the scheduler

- \* Must consider breaks in continuity of work for subcontractors, thereby possibly incurring additional subcontractor mobilization and demobilization costs.
- \* Can depend on the results of the resource leveling operation to reflect a useful realignment of all schedule activities without ' further analysis.
- \* Need not consider its effects, as it is a theoretical concept with limited application to construction projects.
- \* Need only consider the non-union crafts persons.

Q41. In a "crashed" schedule, which is a chain of activities that precede activity 2004?

|       |                                   |                                      |                            |                      | Norn | nal Schedule    | Crashed Schedule |                 |
|-------|-----------------------------------|--------------------------------------|----------------------------|----------------------|------|-----------------|------------------|-----------------|
| ID    | Activity                          | Succ.                                | Rel.                       | Lag                  | Days | Direct<br>Costs | Days             | Direct<br>Costs |
| 1000  | General<br>Conditions             | 11001                                | FF                         |                      | 1072 | \$3,080,000     | 910              | \$2,902,900     |
| 1001  | Preliminary Civil<br>Work         | 1000<br>2001<br>7001                 | SS<br>FS<br>FS             |                      | 85   | \$563,000       | 67               | \$728,000       |
| 2001  | River Diversion<br>Stage 1        | 2002                                 | FS                         |                      | 92   | \$150,000       | 75               | \$190,000       |
| 2002  | River Diversion<br>Stage 2        | 2003                                 | FS                         |                      | 38   | \$25,000        | 28               | 35,000          |
| 2003  | River Diversion<br>Dam            | 2004<br>3001                         | FS<br>FS                   |                      | 15   | \$18,000        | 11               | \$20,000        |
| 2004  | River Diversion to<br>Pipeline    | 3001<br>7001                         | FS<br>FS                   |                      | 38   | \$96,000        | 38               | \$96,000        |
| 3001  | Excavation, Dam<br>Site           | 4001<br>4001<br>5001<br>5001<br>7001 | SS<br>FF<br>SS<br>FF<br>FS | 15<br>15<br>65<br>65 | 30   | \$482,000       | 100              | \$515,000       |
| 4001  | Excavation,<br>Spillway           | 5001<br>5001<br>5001                 | SS                         | 45<br>45             | gʻl  | \$6.78,000      | 118              | \$692,000       |
| 5001  | Drill r d aro t                   | 001                                  | FS                         |                      | 102  | \$637,000       | 92               | \$650,000       |
| 001   | Fick Fill: to                     | 6002                                 | FS                         |                      | 140  | \$1,352,000     | 105              | \$1,470,000     |
| 6002  | Rock Fill: to<br>elevation 38     | 6003                                 | FS                         |                      | 115  | \$969,000       | 95               | \$1,125,000     |
| 6003  | Rock Fill: to<br>elevation 50     | 8001<br>9002<br>9002<br>9003         | FS<br>SS<br>FF<br>FS       | 65<br>65             | 152  | \$1,360,000     | 113              | \$1,540,000     |
| 7001  | Permanent Roads                   | 11001<br>9004                        | FS<br>FS                   |                      | 48   | \$180,000       | 38               | \$205,000       |
| 8001  | Valve House<br>Embankment         | 9004                                 | FS                         |                      | 28   | \$28,000        | 22               | \$36,000        |
| 9001  | Spillway –<br>Concrete            | 11001<br>9002<br>9003                | FS<br>FS                   |                      | 175  | \$1,120,000     | 155              | \$1,305,000     |
| 9002  | Dam Concrete<br>Facing – Concrete | 1001<br>9005                         | FS<br>FS                   |                      | 180  | \$1,260,000     | 160              | \$1,485,000     |
| 9003  | Inlet Tower –<br>Concrete 1 of 2  | 9005                                 | FS                         | 7                    | 70   | \$275,000       | 65               | \$295,000       |
| 9004  | Valve House –<br>Concrete         | 10002                                | FS                         | 7                    | 72   | \$245,000       | 66               | \$265,000       |
| 9005  | Inlet Tower –<br>Concrete 2 of 2  | 10001                                | FS                         | 7                    | 35   | \$28,000        | 35               | \$28,000        |
| 10001 | Inlet Tower –<br>Complete         | 11001                                | FS                         |                      | 25   | \$147,000       | 25               | \$147,000       |

**Q42.** Assuming that you had only one crane capable of 30 lifts per day, 3 column pours requiring 28 lifts each, plus associated assorted work requiring an additional 150 lifts, what is the minimum planned working duration for this work?

<sup>\* 1001, 2001, 2002, 2003</sup> 

<sup>\* 2001, 2002, 2003, 2007</sup> 

<sup>\* 1001, 2002, 2003</sup> 

<sup>\* 1001, 2002, 2002, 2003, 3001</sup> 

| Small Tower Crane                         |                   |
|-------------------------------------------|-------------------|
| Typical capacity for a Sm                 | all Crane         |
| Maximum Load 5 tor<br>Minimum Load 1.5 to | ngine.com         |
| Operation                                 | Time (in minutes) |
| Sling Up                                  | 5                 |
| Hoist Up                                  | 4                 |
| Discharge                                 | 3                 |
| Clear Unload Area                         | 3                 |
| Hoist Down                                | 2                 |

- \* 8 work days
- \* 18 work days
- \* 7 work days
- \* 15 workdays

| <b>Q43.</b> Budgeted cost of work scheduled is |  |
|------------------------------------------------|--|
|------------------------------------------------|--|

- \* The value of the completed work expressed in terms of the budget assigned to that work
- \* The total authorized budget for accomplishing the project scope
- \* The expected total cost of an activity, group of activities or the project
- \* The sum of all budgets for work scheduled to be accomplished within a given time period

#### Q44. Activity C is a

- \* Contentious activity.
- \* Continuous activity.
- \* 1-day activity.
- \* Milestone.

**Q45.** Activity durations are normally estimated in an intuitive and subjective way. All of the following will improve duration accuracy EXCEPT

- \* Use gross building square footages. The pluses and minuses all average out.
- \* Look at each activity independently and don't follow specific logic paths when assigning activity durations.
- \* Divide activities into smaller activities. This will increase activity detail and duration estimate accuracy.
- \* Use the people responsible for performing the work as a resource to assign activity durations.

**AACE-PSP Exam Info and Free Practice Test Professional Quiz Study Materials:** 

https://www.test4engine.com/AACE-PSP exam-latest-braindumps.html]