
Free AACE International AACE-PSP Exam 2023 Practice Materials Collection [Q64-Q78

Free AACE International AACE-PSP Exam 2023 Practice Materials Collection AACE-PSP Exam Info and Free Practice Test All-in-One Exam Guide Jan-2023 NO.64 Each of the following accurately describes total float in a schedule EXCEPT:

- * The amount of time an activity can be delayed without delaying the overall project completion time.
- * Can be positive or negative.
- * The amount of time an activity can be delayed without delaying the start or occurrence of any other activity or event in the network.
- * Computed for an activity by subtracting its early finish from its late finish, or its early start from its late start.

NO.65 Assuming that you had only one crane capable of 30 lifts per day, 3 column pours requiring 28 lifts each, plus associated assorted work requiring an additional 150 lifts, what is the minimum planned working duration for this work?

Small Tower Crane	
Typical capacity for a Sm	all Crane
Maximum Load 5 tor Minimum Load 1.5 to	1911.
Operation	Time (in minutes)
Sling Up	5
Hoist Up	4
Discharge	3
Clear Unload Area	3
	3

- * 8 work days
- * 18 work days
- * 7 work days
- * 15 workdays

NO.66 Which of the following are NOT normally included in the project scope statement, either directly or by reference?

- * Project objectives in terms of cost, schedule and quality measures
- * Project contract between the contractor and owner
- * Project justification
- * Project deliverables

NO.67 Why does activity 1001 have two successor activities?

		Logic			Normal Schedule		Crashed Schedule	
ID	Activity	Succ.	Rel.	Lag	Days	Direct Costs	Days	Direct Costs
1000	General Conditions	11001	FF		1072	\$3,080,000	910	\$2,902,900
1001	Preliminary Civil Work	1000 2001 7001	SS FS FS		85	\$563,000	67	\$728,000
2001	River Diversion Stage 1	2002	FS		92	\$150,000	75	\$190,000
2002	River Diversion Stage 2	2003	FS		38	\$25,000	28	35,000
2003	River Diversion Dam	2004 3001	FS FS		15	\$18,000	11	\$20,000
2004	River Diversion to Pipeline	3001 7001	FS FS		38	\$96,000	38	\$96,000
3001	Excavation, Dam Site	4001 4001 5001 5001 7001	SS FF SS FF FS	15 15 65 65	30	\$482,000	100	\$515,000
4001	Excavation, Spillway	5001 5001 5001	SS	45 45	gi	\$6.78,700	118	\$692,000
5001	Drill and arout	001	FS		102	\$637,000	92	\$650,000
001	First Fill: to	6002	FS		140	\$1,352,000	105	\$1,470,000
6002	Rock Fill: to elevation 38	6003	FS		115	\$969,000	95	\$1,125,000
6003	Rock Fill: to elevation 50	8001 9002 9002 9003	FS SS FF FS	65 65	152	\$1,360,000	113	\$1,540,000
7001	Permanent Roads	11001 9004	FS FS		48	\$180,000	38	\$205,000
8001	Valve House Embankment	9004	FS		28	\$28,000	22	\$36,000
9001	Spillway – Concrete	11001 9002 9003	FS FS FS		175	\$1,120,000	155	\$1,305,000
9002	Dam Concrete Facing – Concrete	1001 9005	FS FS		180	\$1,260,000	160	\$1,485,000
9003	Inlet Tower – Concrete 1 of 2	9005	FS	7	70	\$275,000	65	\$295,000
9004	Valve House – Concrete	10002	FS	7	72	\$245,000	66	\$265,000
9005	Inlet Tower – Concrete 2 of 2	10001	FS	7	35	\$28,000	35	\$28,000
10001	Inlet Tower – Complete	11001	FS		25	\$147,000	25	\$147,000
	Valve House -	10001	FS		24	\$132,000	24	\$133,000

NO.68 Theoretically construct a summary activity for activities 6001 through 6003. Identify the governing predecessor and successor activities for the hammock:

^{*} Because the late finish of 1001 and the late start of 7001 require two successors

^{*} Because the problem could not effectively work with only one successor

^{*} Because there are two defined logic paths for the work

^{*} Because the duration of activities 2001, 2002 and 200.f require two successors

		Logic			Normal Schedule		Crashed Schedule	
ID	Activity	Succ.	Rel.	Lag	Days	Direct Costs	Days	Direct Costs
1000	General Conditions	11001	FF		1072	\$3,080,000	910	\$2,902,900
1001	Preliminary Civil Work	1000 2001 7001	SS FS FS		85	\$563,000	67	\$728,000
2001	River Diversion Stage 1	2002	FS		92	\$150,000	75	\$190,000
2002	River Diversion Stage 2	2003	FS		38	\$25,000	28	35,000
2003	River Diversion Dam	2004 3001	FS FS		15	\$18,000	11	\$20,000
2004	River Diversion to Pipeline	3001 7001	FS FS		38	\$96,000	38	\$96,000
3001	Excavation, Dam Site	4001 4001 5001 5001 7001	SS FF SS FF FS	15 15 65 65	30	\$482,000	100	\$515,000
4001	Excavation, Spillway	5001 5001 5001	SS	45 45	gi	\$6.78,700	118	\$692,000
5001	Drill and arout	001	FS		102	\$637,000	92	\$650,000
001	First Fill: to	6002	FS		140	\$1,352,000	105	\$1,470,000
6002	Rock Fill: to elevation 38	6003	FS		115	\$969,000	95	\$1,125,000
6003	Rock Fill: to elevation 50	8001 9002 9002 9003	FS SS FF FS	65 65	152	\$1,360,000	113	\$1,540,000
7001	Permanent Roads	11001 9004	FS FS		48	\$180,000	38	\$205,000
8001	Valve House Embankment	9004	FS		28	\$28,000	22	\$36,000
9001	Spillway – Concrete	11001 9002 9003	FS FS FS		175	\$1,120,000	155	\$1,305,000
9002	Dam Concrete Facing – Concrete	1001 9005	FS FS		180	\$1,260,000	160	\$1,485,000
9003	Inlet Tower – Concrete 1 of 2	9005	FS	7	70	\$275,000	65	\$295,000
9004	Valve House – Concrete	10002	FS	7	72	\$245,000	66	\$265,000
9005	Inlet Tower – Concrete 2 of 2	10001	FS	7	35	\$28,000	35	\$28,000
10001	Inlet Tower – Complete	11001	FS		25	\$147,000	25	\$147,000
	Valve House -	10001	FS		24	\$132,000	24	\$133,000

- * Predecessor is activity 5001, successor is activity 8001
- * Predecessor is activity 4001, successor is activity 8001
- * Predecessor is activity 9001, successor is activity 9002
- * Predecessor is activity 5001, successor is activity 8002

NO.69 Project delays are best analyzed

- * After either the contractor or the owner acknowledges responsibility for the delay.
- * Contemporaneously with the delay.
- * By an expert after the project is finished when complete records are available and the impact is known.
- * Late in the project.

NO.70 How many work days does it take to move the product from testing to sale?

PSP Scenario #4

Product Development has established the following items with the duration required for each need to be accomplished in order for the release of a new product. Once Product Testing is complete, both Release for Manufacture and Drofting of an order manual can proceed. Proofing and correction of the manual is equired prior to printing. Manufacturing and printing of the number of the required to package and make the product available.

ID 🌬	Activity Description	Duration	Predecessors
Α	Complete Product Testing	30	-
В	Release for Manufacture	0	Α
C	Draft Product Manual	20	Α
D	Manufacture Product	60	В
E	Proof Product Manual	10	C
F	Print Project Manual	20	E
G	Package Product	10	D, F
Н	Product Available Date	0	G

^{* 60.}

NO.71 The linear scheduling velocity diagram has the following two-axis:

- * Location and crew size
- * Time and location
- * Time and rate of progress
- * Time and crew size

NO.72 Time-scaled logic diagrams are

- * Only calculated using a computer.
- * The same as a pure-logic diagram.
- * Used to calculate the most probable activity duration.
- * Logic networks that are drawn to match the calendar.

NO.73 Using the "normal" schedule, what is the early finish date of activity 10002 and its total float?

^{* 70.}

^{* 100.}

^{* 90.}

		Logic			Normal Schedule		Crashed Schedule	
ID	Activity	Succ.	Rel.	Lag	Days	Direct Costs	Days	Direct Costs
1000	General Conditions	11001	FF		1072	\$3,080,000	910	\$2,902,900
1001	Preliminary Civil Work	1000 2001 7001	SS FS FS		85	\$563,000	67	\$728,000
2001	River Diversion Stage 1	2002	FS		92	\$150,000	75	\$190,000
2002	River Diversion Stage 2	2003	FS		38	\$25,000	28	35,000
2003	River Diversion Dam	2004 3001	FS FS		15	\$18,000	11	\$20,000
2004	River Diversion to Pipeline	3001 7001	FS FS		38	\$96,000	38	\$96,000
3001	Excavation, Dam Site	4001 4001 5001 5001 7001	SS FF SS FF FS	15 15 65 65	30	\$482,000	100	\$515,000
4001	Excavation, Spillway	5001 5001 5001	SS	45 45	gi	\$6.78,700	118	\$692,000
5001	Drill and arout	001	FS		102	\$637,000	92	\$650,000
001	First Fill: to	6002	FS		140	\$1,352,000	105	\$1,470,000
6002	Rock Fill: to elevation 38	6003	FS		115	\$969,000	95	\$1,125,000
6003	Rock Fill: to elevation 50	8001 9002 9002 9003	FS SS FF FS	65 65	152	\$1,360,000	113	\$1,540,000
7001	Permanent Roads	11001 9004	FS FS		48	\$180,000	38	\$205,000
8001	Valve House Embankment	9004	FS		28	\$28,000	22	\$36,000
9001	Spillway – Concrete	11001 9002 9003	FS FS FS		175	\$1,120,000	155	\$1,305,000
9002	Dam Concrete Facing – Concrete	1001 9005	FS FS		180	\$1,260,000	160	\$1,485,000
9003	Inlet Tower – Concrete 1 of 2	9005	FS	7	70	\$275,000	65	\$295,000
9004	Valve House – Concrete	10002	FS	7	72	\$245,000	66	\$265,000
9005	Inlet Tower – Concrete 2 of 2	10001	FS	7	35	\$28,000	35	\$28,000
10001	Inlet Tower – Complete	11001	FS		25	\$147,000	25	\$147,000
	Valve House -	10001	FS		24	\$132,000	24	\$133,000

NO.74 Which of the following is NOT true?

- * Remaining durations can exceed original durations.
- * Constraints can interfere with the longest path calculation.
- * Multiple calendars can affect the total float calculation.
- * A network must contain only one Critical Path.

NO.75 When reconstructing a CPM schedule electronically from a hardcopy, which of the following is NOT required to determine

^{* 12-27-03} and 24 days of float

^{* 12-18-03} and 4 days of float

^{* 12-17-03} and 4 days of float

^{* 12-18-03} and 25 days of float

the critical path?

- * Detailed listing of working days for each calendar used
- * Predecessor and successor listing with logic type and lag duration, preferably sorted by activity ID
- * Assigned party responsibility for each work task
- * Tabular listing of activities showing duration, calendar ID, early and late dates

NO.76 Which is NOT an industry-recognized methodology for quantifying critical delay?

- * Gantt Chart.
- * Periodic Windows.
- * Collapsed As-Built.
- * Time Impact.

1-100

NO.77 During proofing of the product manual, a problem was discovered requiring 15 days additional time to effect a correction. How can the date of availability be maintained?

PSP Scenario #4

Product Development has established the following items with the duration required for each need to be accomplished in order for the release of a new product. Once Product Testing is complete, both Release for Manufacture and Drofting of a reduct manual can proceed. Proofing and correction of the manual is equired prior to printing. Manufacturing and printing of the nanalizative remains to package and make the product available.

ID 🌬	Activity Description	Duration	Predecessors
Α	Complete Product Testing	30	-
В	Release for Manufacture	0	Α
C	Draft Product Manual	20	Α
D	Manufacture Product	60	В
E	Proof Product Manual	10	C
F	Print Project Manual	20	E
G	Package Product	10	D, F
Н	Product Available Date	0	G

- * Delay product release by 5 days.
- * Expedite packaging by 5 days.
- * Expedite printing by 5 days.
- * Delay manufacturing by 5 days.

NO.78 An early start constraint dictates

- * An activity's remaining duration.
- * The planned start of a successor activity
- * The planned start of an activity.
- * The actual start of an activity.

Pass AACE International AACE-PSP Actual Free Exam Q&As Updated Dump:

https://www.test4engine.com/AACE-PSP exam-latest-braindumps.html]